01 ÇÊ¿äÇÑ ¼±Çü´ë¼ö¿Í ¹ÌÀûºÐÇÐ ÀÌ·Ð Á¦1Àý º¤ÅÍ°ø°£°ú ¼±Çü»ç»ó 7 Á¦2Àý Á¢º¤ÅÍ, Á¢°ø°£ ±×¸®°í º¤ÅÍÀå 32 Á¦3Àý ÀÇ µî°Å¸®»ç»ó 39
02 ±¹¼Ò °î¼±ÀÌ·Ð(Local Curve Theory) Á¦1Àý °î¼±ÀÇ Ç¥Çö, Á¤Ä¢°î¼±, °î¼±ÀÇ Àç¸Å°³È 47 Á¦2Àý È£ÀÇ ±æÀÌ(Arc-length)¿¡ ÀÇÇÑ Àç¸Å°³È 51 Á¦3Àý °î·ü°ú ºñƲ¸²·ü(Curvatures and Torsions) 58 Á¦4Àý ÇÁ·¹³×-¼¼·¹ Á¤¸®(Frenet-Serret Theorem) 61 Á¦5Àý °î¼±ÀÇ ±âº»Á¤¸®(Fundamental Theorem for Curves) 76 Á¦6Àý ÀϹÝÀûÀÎ Á¤Ä¢°î¼± 83
03 ±¹¼Ò °î¸éÀÌ·ÐI (Local Surface Theory I) Á¦1Àý °î¸éÀÇ Ç¥Çö, ´Ü¼ø°î¸é(Simple Surface) 91 Á¦2Àý °î¸é(Surface) 103 Á¦3Àý Á¦1±âº»Çü½Ä(First Fundamental Form) 111 Á¦4Àý ¹ý°î·ü, ÃøÁö°î·ü ±×¸®°í °¡¿ì½º°ø½Ä 119 (Normal Curvatures, Geodesic Curvatures, Gauss Formula) Á¦5Àý ÃøÁö¼±(Geodesics) 127 Á¦6Àý ÆòÇ຤ÅÍÀå(Parallel Vector Fields) 141
04 ±¹¼Ò °î¸éÀÌ·Ð II(Local Surface Theory II) Á¦1Àý Á¦2±âº»Çü½Ä°ú ¿ÍÀΰ¡¸£ÅÙ»ç»ó 153 (Second Fundamental Forms and Weingarten Maps) Á¦2Àý ÁÖ°î·ü, °¡¿ì½º °î·ü, Æò±Õ°î·ü 163 (Principal Curvatures, Gaussian Curvatures, Mean Curvatures) Á¦3Àý °¡¿ì½ºÀÇ ³î¶ó¿î Á¤¸®(Gauss¡¯s Theorema Egregium) 174 Á¦4Àý °î¸é°£ÀÇ µî°Å¸®»ç»ó(Isometry) 178 Á¦5Àý µî°¢»ç»ó(Conformal Map) 186 Á¦6Àý °¡¿ì½º°î·üÀÌ »ó¼öÀÎ °î¸é 193 (Surfaces of Constant Gaussian Curvature)
05 ´ë¿ª °î¸éÀÌ·Ð(Global Surface Theory) Á¦1Àý °£´ÜÇÑ ´ë¿ªÀû ¼ºÁúµé 201 Á¦2Àý ÃøÁöÁÂÇ¥Á¶°¢(Geodesic Coordinate Patches) 209 Á¦3Àý ¹æÇ⼺(Orientability) 212 Á¦4Àý °¡¿ì½º-º¸³× Á¤¸®(Gauss Bonnet Theorem) 217
¿¬½À¹®Á¦Ç®ÀÌ ¹× ÇØ´ä 233
Âü°í¹®Çå 287
ã¾Æº¸±â 288 |