µµ¼­¸í

ÀúÀÚ¸í

Å°¿öµå
 
> µµ¼­Á¤º¸ > ½Å°£µµ¼­
±âÃʹ̺бâÇÏÇР
°­ÅÂÈ£, Àå⸲ l  ¹ßÇà : 2021-02-24
 
ºÐ¾ß : ÀÚ¿¬°úÇÐ
Á¤°¡ : 15,000 ¿ø
ÆÇÇü : »ç·ú¹èÆÇ
¸é¼ö : 293
ISBN : 978.89.7868.975.5
Àç°í»óÅ : Àç°íÀÖÀ½
 
   
Ã¥¼Ò°³
±âÃʹ̺бâÇÏÇÐÀº ÇкΠ3,4ÇгâÀ» À§ÇÑ ¹ÌºÐ±âÇÏÇÐ ÀÔ¹®¼­ÀÌ´Ù. ÇкΰúÁ¤¿¡¼­ ²À ½ÀµæÇؾßÇÒ ³»¿ë Áï, 3Â÷¿ø À¯Å¬¸®µå°ø°£¿¡¼­ÀÇ °î¼± ¹× °î¸é¿¡ ´ëÇÑ ÀÌ·ÐÀ» °£°áÇÏ°Ô ¼­¼úÇÏ°íÀÚ ÇÏ¿´À¸¸ç ¹Ì¸® ¾Ë¾Æ µÎ¾î¾ßÇÒ ¼±Çü´ë¼ö¿Í ¹ÌÀûºÐÇÐÀÇ ±âº»Áö½ÄÀ» ¼ö·ÏÇÏ¿© Á» ´õ ½±°Ô ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿´´Ù. ¶ÇÇÑ °¢ ´Ü¿ø¸¶´Ù ºÎ¿©ÇÑ ¿¬½À¹®Á¦¿¡ ´ëÇÑ °è»ê°úÁ¤À» »ó¼¼È÷ ÷ºÎÇÏ¿© ½º½º·Î °øºÎÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿´´Ù.
ÀúÀÚ¼Ò°³
¸ñÂ÷
01 ÇÊ¿äÇÑ ¼±Çü´ë¼ö¿Í ¹ÌÀûºÐÇÐ ÀÌ·Ð
  Á¦1Àý º¤ÅÍ°ø°£°ú ¼±Çü»ç»ó 7
  Á¦2Àý Á¢º¤ÅÍ, Á¢°ø°£ ±×¸®°í º¤ÅÍÀå 32
  Á¦3Àý ÀÇ µî°Å¸®»ç»ó 39

02 ±¹¼Ò °î¼±ÀÌ·Ð(Local Curve Theory)
  Á¦1Àý °î¼±ÀÇ Ç¥Çö, Á¤Ä¢°î¼±, °î¼±ÀÇ Àç¸Å°³È­ 47
  Á¦2Àý È£ÀÇ ±æÀÌ(Arc-length)¿¡ ÀÇÇÑ Àç¸Å°³È­ 51
  Á¦3Àý °î·ü°ú ºñƲ¸²·ü(Curvatures and Torsions) 58
  Á¦4Àý ÇÁ·¹³×-¼¼·¹ Á¤¸®(Frenet-Serret Theorem) 61
  Á¦5Àý °î¼±ÀÇ ±âº»Á¤¸®(Fundamental Theorem for Curves) 76
  Á¦6Àý ÀϹÝÀûÀÎ Á¤Ä¢°î¼± 83

03 ±¹¼Ò °î¸éÀÌ·ÐI (Local Surface Theory I)
  Á¦1Àý °î¸éÀÇ Ç¥Çö, ´Ü¼ø°î¸é(Simple Surface) 91
  Á¦2Àý °î¸é(Surface) 103
  Á¦3Àý Á¦1±âº»Çü½Ä(First Fundamental Form) 111
  Á¦4Àý ¹ý°î·ü, ÃøÁö°î·ü ±×¸®°í °¡¿ì½º°ø½Ä 119
(Normal Curvatures, Geodesic Curvatures, Gauss Formula)
  Á¦5Àý ÃøÁö¼±(Geodesics) 127
  Á¦6Àý ÆòÇ຤ÅÍÀå(Parallel Vector Fields) 141

04 ±¹¼Ò °î¸éÀÌ·Ð II(Local Surface Theory II)
  Á¦1Àý Á¦2±âº»Çü½Ä°ú ¿ÍÀΰ¡¸£ÅÙ»ç»ó 153
(Second Fundamental Forms and Weingarten Maps)
  Á¦2Àý ÁÖ°î·ü, °¡¿ì½º °î·ü, Æò±Õ°î·ü 163
(Principal Curvatures, Gaussian Curvatures, Mean Curvatures)
  Á¦3Àý °¡¿ì½ºÀÇ ³î¶ó¿î Á¤¸®(Gauss¡¯s Theorema Egregium) 174
  Á¦4Àý °î¸é°£ÀÇ µî°Å¸®»ç»ó(Isometry) 178
  Á¦5Àý µî°¢»ç»ó(Conformal Map) 186
  Á¦6Àý °¡¿ì½º°î·üÀÌ »ó¼öÀÎ °î¸é 193 
(Surfaces of Constant Gaussian Curvature)

05 ´ë¿ª °î¸éÀÌ·Ð(Global Surface Theory)
  Á¦1Àý °£´ÜÇÑ ´ë¿ªÀû ¼ºÁúµé 201
  Á¦2Àý ÃøÁöÁÂÇ¥Á¶°¢(Geodesic Coordinate Patches) 209
  Á¦3Àý ¹æÇ⼺(Orientability) 212
  Á¦4Àý °¡¿ì½º-º¸³× Á¤¸®(Gauss Bonnet Theorem) 217

¿¬½À¹®Á¦Ç®ÀÌ ¹× ÇØ´ä 233

Âü°í¹®Çå 287

ã¾Æº¸±â 288